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Abstract Transactional memory (TM) is a new promising concurrency-control mechanism that can avoid many of the
pitfalls of the traditional lock-based techniques. TM systems handle data races between threads automatically so that
programmers do not have to reason about the interaction of threads manually. TM provides a programming model that may
make the development of multi-threaded programs easier. Much work has been done to explore the various implementation
strategies of TM systems and to achieve better performance, but little has been done on how to formally reason about
programs using TM and how to make sure that such reasoning is sound. In this paper, we focus on the semantics of
transactional memory and present a proof-carrying code (PCC) system for reasoning about programs using TM . We
formalize our reasoning with respect to the TM semantics, prove its soundness, and use examples to demonstrate its
effectiveness.
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1 Introduction

The multicore architectures, which provide infras-
tructures of better performance, have become popu-
lar. To benefit from this growth in performance, pro-
grammers are required and forced to develop multi-
threaded programs. However, it is of great challenges
for programmers to deal with subtle concurrent access
to shared memory by multiple threads. Traditionally,
programmers use locks to achieve mutual exclusion on
concurrent access to shared memory. But lock-based
programming is difficult to reason about and may lead
to problems such as deadlock. Transactional memory
(TM) is proposed as an alternate concurrency-control
mechanism to avoid many of the pitfalls of the lock-
based one. TM systems provide transactions as a pro-
gramming structure for programmers and handle data
races between threads automatically so that program-
mers do not have to reason about the interaction of
threads manually. TM provides a programming model
that may make the development of multi-threaded pro-
grams easier.

Much work has been done to explore the var-
ious implementation strategies of TM systems in
hardware[1−4], in software[5−8], and in hybrid[9,10]. The

performance issues of these implementations have also
been discussed. And there has also been some work
that explores the formalization of the semantics of
TM[6,11−15]. But little has been done on how to for-
mally reason about programs using TM and how to
make sure that such reasoning is sound. Easy reason-
ing, one of the primary reasons to introduce transac-
tional memory, is rarely referred to.

Proof-carrying code (PCC)[16] is a Hoare-style rea-
soning framework and has been well studied to rea-
son about various properties of programs in recent
years[17−20]. And there are also extensions for reason-
ing about multi-threaded programs using locks[21,22].
However, the appearance of programs using TM claims
for to be a brand-new system.

In this paper, we present a system to certify con-
current programs using transactional memory. We de-
fine an abstract machine with built-in TM at assembly-
level and present a program logic based on this ma-
chine to support the verification of different properties.
We prove the soundness of our program logic with re-
spect to the semantics of transactional memory and use
examples to demonstrate its effectiveness. Our paper
makes the following contributions.
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• We present a system for certifying properties of
programs using TM. Even though the programming
using transactions is supposed to reason about easily,
there are subtle properties that are expected by multi-
threaded programs. To ensure such properties are cor-
rectly enforced in a concurrent program, a substantial
way is to perform a formal verification. Our system is
essentially a PCC system that performs such verifica-
tion.
• We present a program logic for reasoning about

properties of programs using TM in our system. And
we prove it sound with respect to the TM semantics.
TM systems free programmers from manually reason-
ing about the interaction of threads, but threads do
cooperate on shared memory. To verify the properties
of a program using TM, we not only verify the proper-
ties of each thread, but also emphasize the cooperation
that is allowed on shared memory. In our system, we
specify a global invariant on shared memory to justify
the interleaving of transactions. This global invariant
is required to hold all through the program. We es-
tablish the consistency for transactions in our system
by requiring a transaction to transmit shared memory
from one consistent state that respects the global in-
variant to another. We formalize such reasoning in a
PCC system and prove it sound following the syntactic
approach to proving type soundness. And we also use
examples to demonstrate its effectiveness. Our reason-
ing reveals the easy reasoning aspect of programs using
TM: programmers can reason about their threads in
isolation and need only to make sure that their threads
do not violate the global invariant when transactions
update shared memory.
•Our system addresses the safety issues at assembly-

level directly as PCC systems do. So we do not need
to trust the complicated compilation and optimization,
and can have a smaller trusted computing base to build
executable PCC packages for programs using TM. Fur-
thermore, our abstraction of TM systems is still general
and similar to high-level ones. The reasoning we de-
scribe at assembly-level can be easily lifted up to higher
levels.

All our work is mechanized in Coq proof assistant[23]

to build machine checkable proofs. And the efforts
needed to build proofs for PCC packages are signifi-
cantly mitigated due to the easy reasoning property
enforced by TM semantics.

The rest of this paper is organized as follows. In
Section 2, we discuss the semantics and implementa-
tions of transactional memory and also the violations
in practice. In Section 3, we describe the abstract ma-
chine we model and the program logic we use to reason.

Then we present examples that are written and proven
in our system in Section 4. In Section 5, we discuss the
related work and then give the conclusion in Section 6.

2 Transactional Memory

In this section, we discuss the semantics of transac-
tional memory and its implementation strategies. Then
we study the violations in implementations and deter-
mine the compositions of the abstract machine in our
system.

2.1 Semantics and Implementations

Transactional memory systems provide transactions
as a programming structure for programmers. A trans-
action is a sequence of instructions that executes atom-
ically and in isolation. The atomicity refers to the all-
or-nothing effect on the memory. If a transaction com-
mits, then all of its modifications to the memory appear
to take effect all together and happen instantaneously.
And if a transaction aborts (a rollback occurs subse-
quently), then none of its modifications takes effect, as
if the transaction were never executed.

A transaction also runs in isolation. It executes as
if it is the only active operation in the system, and no
other operations make progress while it is running. This
means that the effect of a transaction is not visible to
other threads until the transaction commits.

The atomicity and isolation properties together give
the illusion that there is no interaction between trans-
actions, and a transaction executes as a single atomic
step with respect to the other threads in the system.
Thus, programmers can reason about the behavior of a
thread without considering the interaction of the other
threads, as if it is executed under a sequential circum-
stance.

The key mechanisms for a TM system to provide the
atomicity and isolation properties are data versioning
and conflict detection, whose implementations distin-
guish alternative TM proposals.

Data versioning manages multiple versions of data
when transactions are being executed. A new version,
produced by one of the not-yet-commit transactions,
will become visible to all other threads after the trans-
action commits. The old version, produced by a pre-
viously committed transaction, will be preserved when
the transaction aborts. With eager versioning, a write
access within a transaction immediately writes to mem-
ory the new data and creates an undo log for the old
one. Also the write access prevents other threads from
accessing the same address until the transaction com-
pletes by using locks or equivalent mechanisms. When
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the transaction aborts, the undo log is used to restore
the old version of data.

Lazy versioning buffers all new data versions until
the transaction completes. The new versions will be
copied to the actual memory when the transaction com-
mits. If the transaction aborts, the buffer is discarded
and no further compensation is needed.

Conflict detection signals the multiple access to the
same data with at least one transaction attempting
to write a new version. Detection relies on tracking
the read set (addresses read from) and write set (ad-
dresses written to) for each transaction. Under eager
conflict detection, the system checks for conflicts when-
ever transactions read or write data. While under lazy
conflict detection, all checks are delayed until the end
of each transaction (i.e., when it tries to commit).

2.2 Violations

TM systems are supposed to enforce the properties
of atomicity (all-or-nothing) and isolation (intermedi-
ate state not visible to other threads). But practical
implementations may violate these properties more or
less and may lead to unexpected behaviors of programs
using TM as follows.
• Atomicity Violation. In practice, the rollback op-

eration of eager versioning and the commit operation of
lazy versioning are time-consuming. If the TM system
allows other threads to access the data which rollback
or commit may modify during their execution, threads
may get invalid data (read data ahead of rollback or
commit operations) or lose update (write data ahead).
The solution is to claim exclusiveness for the data that
rollback or commit is about to access before their exe-
cution.
• Isolation Violation. Threads may see the inter-

mediate state of a transaction when implementations
of eager versioning do not claim exclusiveness for the
addresses it writes to. Blundell et al.[24] discussed this
issue and called it weak atomicity.
• Privatization Issue. The atomicity and isolation

properties of TM systems do not specify whether the
access to shared data is allowed to bypass the TM sys-
tem’s mechanisms (outside transactions). If “yes”, it
introduces the privatization problem[25] we will not ad-
dress for now. If “no”, then TM systems should han-
dle the access to shared data outside transactions too,
because they may lead to unexpected behaviors of pro-
grams. Shpeisman et al.[26] discussed this problem and
solved it by adding barriers with respect to TM system
for every access to memory outside transactions. These
barriers can be treated as featherweight transactions in
our opinion.

To focus on the reasoning issue, we model the ab-
stract machine with strict semantics of atomicity and
isolation and require that all access to shared data must
appear within transactions. The TM system in our sys-
tem will be a lazy versioning, lazy conflict detection
system. Being at the assembly level, the granularity of
conflict detection is naturally word-level. And we do
not support nested transaction for now since it is much
more a performance consideration than the semantics
of transaction basis. We leave this to our future work.

3 The System

In this section, we first present an abstract machine
with transaction structures and its operational seman-
tics. Then we present a program logic of this machine
for reasoning.

3.1 Abstract Machine

Fig.1 defines the abstract machine and the syntax
of the assembly language. A program P consists of a
code heap C, a global shared data heap H (referred to
as a “global heap” in the remainder of this paper) and
numbers of threads TS working on the global heap con-
currently. The code heap C maps labels to instructions.
The data heapHmaps heap addresses to natural values.
And the threads TS are modeled as a partial mapping
from thread id t (natural numbers) to its owner thread
T. Each thread T consists of a local view of the global
heap Hs (referred to as a “local heap” in the remainder
of this paper), a write set Hw for recording the write
attempts of its transaction, a register file R, a program

(Program) P ::= (C,H,TS)
(Threads) TS ::= {t Ã T}∗
(Thread) T ::= (Hs,Hw,R, pc,L,B)

(BackFile) B ::= (R, pc)

(CodeHeap) C ::= {f Ã ι}∗
(Heap) H,Hs ::= {l Ã w}∗

(WriteSet) Hw ::= {l Ã w}∗
(LogFile) L ::= ∅ | (l, w) :: L
(RegFile) R ::= {r Ã w}∗

(Reg) r ::= {rk}k∈{0,...,31}

(Labels) t, f, l, pc ::= n (nat nums)

(WordVal) w ::= n (nat nums)

(Instr) ι ::= addu rd, rs, rt | addiu rd, rs, w

| subu rd, rs, rt | sltu rd, rs, rt

| andi rd, rs, 1 | lw rd, w(rs)

| sw rs, w(rd) | beq rs, rt, f

| bne rs, rt, f | j f | jr rs

| starttrans | commit

(InstrSeq) I ::= ι | ι; I

Fig.1. Machine syntax.
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(C,H, [(t1 Ã T1), . . . , (tn Ã Tn)]) 7−→ (C,H′, [(t1 Ã T1), . . . , (tk−1 Ã Tk−1), (tk Ã T′k), (tk+1 Ã Tk+1), . . . , (tn Ã Tn)])

if (C,H,Tk)
k7−→(C,H′,T′k) for any k

where

(C,H, (Hs,Hw,R, pc,L,B))
k7−→(C,H′,T′)

if C[pc] = then (H′,T′) =

addu rd, rs, rt (H, (Hs,Hw,R{rd Ã R(rs) + R(rt)}, pc+1,L,B))

addiu rd, rs, w (H, (Hs,Hw,R{rd Ã R(rs) + w}, pc+1,L,B))

subu rd, rs, rt (H, (Hs,Hw,R{rd Ã R(rs)− R(rt)}, pc+1,L,B))

sltu rd, rs, rt (H, (Hs,Hw,R{rd Ã i}, pc+1,L,B)) if R(rs) < R(rt), i = 1, else i = 0

andi rd, rs, 1 (H, (Hs,Hw,R{rd Ã i}, pc+1,L,B)) if R(rs) is odd, i = 1, else i = 0

lw rd, w(rs) (H, (Hs,Hw,R{rd Ã Hs(l)}, pc+1, (L :: (l,Hs(l))),B)) if l /∈ dom(Hw)

(H, (Hs,Hw,R{rd Ã Hs(l)}, pc+1,L,B)) if l ∈ dom(Hw)

where l = R(rs) + w ∧ l ∈ dom(Hs)

sw rs, w(rd) (H, ((Hs{l Ã R(rs)}), (Hw ] {l Ã R(rs)}),R, pc+1,L,B)) if l = R(rd) + w ∧ l ∈ dom(Hs)

beq rs, rt, f (H, (Hs,Hw,R, f,L,B)) if R(rs) = R(rt)

(H, (Hs,Hw,R, pc+1,L,B)) otherwise

bne rs, rt, f (H, (Hs,Hw,R, f,L,B)) if R(rs) 6= R(rt)

(H, (Hs,Hw,R, pc+1,L,B)) otherwise

j f (H, (Hs,Hw,R, f,L,B))

jr rs (H, (Hs,Hw,R,R(rs),L,B))

starttrans (H, (H,∅,R, pc+1,∅, (R, pc)))

commit ((H ] Hw), (∅,∅,R, pc+1,∅,B)) if ∀ (l, w) ∈ L, H(l) = w

(H, (∅,∅,B.R,B.pc,∅,B)) otherwise

Fig.2. Operational semantics.

counter pc, a log file L for recording the read attempts
of its transaction, and a back-up file B for restoring the
state of a transaction when it rolls back. Here we ignore
the fact that a thread may have a private data heap of
its own, because the private data heap does not consist
of shared data and it can be treated as an extension of
the register file.

The register file R maps registers to natural values.
The log file L records the heap address and the value it
stores for every read when executing a transaction. And
the back-up file B records the state of the register file R
and the program counter pc when a transaction starts.
The set of instructions we present here are the com-
monly used subset in RISC machines with additional
instructions marking the start (starttrans) and the
end (commit) of a transaction.

The step function (7−→) of a program P is defined in
Fig.2. The auxiliary function (C,H,Tk) k7−→(C,H′,T′k)
is used to define the effects of the execution of a thread
Tk. Here we follow the preemptive thread model where
execution of threads can be preempted at any program

point. This thread model is enforced by allowing any
thread (id tk) to execute at any program point in the
definition of the step function. Thus, we define an in-
terleaving model for multi-threaded machines where the
instructions of individual thread execute with sequen-
tial consistency.

The operational semantics for most instructions are
quite straightforward. We focus on the transaction re-
lated instructions here. The starttrans instruction
signals the start of a transaction. It initializes the write
set Hw and the log file L to empty and saves current
register file R and program counter pc to the back-up
file B to recover the state of the transaction when it rolls
back. It also copies the global heap H to its local copy
Hs to act as its view to the global heap when execut-
ing inside a transaction. The commit instruction checks
whether the log file L is consistent with current global
heap H. If “yes”, the transaction is allowed to commit
its effects Hw to the global heap H. If “no”, register file
and program counter are restored from the back-up file
B to restart the transaction. For both cases, the local
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heap Hs, write set Hw and log file L are set empty.
The lw and sw instructions operate on local heap Hs

only. Thus all the access attempts to the global heap H
are required to operate on the local copy Hs first and
take effect on the global heap H until the correspond-
ing transaction commits. So the non-transactional ac-
cess to shared memory H is denied. The lw instruction
reads data and appends the log file L when the ad-
dress it reads from is not in the domain of the write
set Hw. The sw instruction updates the local heap Hs

directly and performs a unique merge on the write set
Hw recording its write attempt to the global heap H.

The function ] defines a unique merge on heaps as
follows:

∀ l. (Ha ]Hb) (l) =
{ Hb (l), l ∈ Hb;

Ha (l), l 6∈ Hb.

The abstract machine records the values but not the
versions of the global heap in logs as what Herlihy et
al.[7] have done and identifies the consistency of the log
file L by checking whether all logged tuples (l, w) reflect
the mapping relation in H (∀ (l, w) ∈ L, H(l) = w).
The implementation strategies of data versioning and
conflict detection may vary in different TM systems.
However, verification should check the consistency of
both branches no matter what mechanisms cause the
control flow to branch. So we implement a relatively
simple mechanism in the abstract machine to remove
the nondeterminacy of the system.

As shown in Fig.2, all instructions operate on local
data structures of threads except commit. So the effects
(on the global heap) of a transaction are not visible to
other threads until the transaction commits. The isola-
tion property is properly established. Also the update
operation on the global heap and the rollback operation
on local structures are defined to finish in a single step,
we achieve atomicity by definitions.

The abstract machine we present here may have
poor performance due to redundant rollbacks: success-
ful commit of other threads will always cause a trans-
action to roll back, if the transaction has a read from
the address that is just updated, no matter it happens
before (conflict occurs) or after that commit (should be
fine). But it defines a semantics of TM systems strictly
and works fine with reasoning as we show later.

3.2 Program Specifications

In our system, transactions are identified as atomic
operations that modify the global heap with respect to
certain invariant. This invariant may be violated during
the execution of a transaction, but will be reestablished

when the transaction completes. Since the intermedi-
ate state of a transaction is not visible to the other
threads, the violation of the invariant will not be ob-
served by other threads, the global heap will always be
in a consistent state that respects the invariant. To en-
force such reasoning, we track the state of thread-local
data structures during the execution of a thread to en-
sure that the desired properties are correctly enforced.
And we also make sure that the update operation on
the global heap does not violate the invariant on the
global heap.

Fig.3 defines the specification constructs in our sys-
tem for such reasoning. A program specification Φ con-
sists of a global invariant Inv and code heap specifica-
tions Ψ for threads. The global invariant Inv speci-
fies the restrictions on the global heap H when multi-
ple threads are working on it concurrently. The code
heap specification Ψ maps labels to preconditions. The
global invariant Inv and the precondition p for an in-
struction together form the expectations at that pro-
gram point.

(State) S ::= (H,Hs,Hw,R, pc,L,B)

(Pstate) Sp ::= (Hs,Hw,R, pc,B)

(Spred) p ∈ Pstate → Prop

(Invariant) Inv ∈ Heap → Prop

(ProgSpec) Φ ::= (Inv , [Ψ1, . . . ,Ψn])

(CdHpSpec) Ψ ::= {f Ã p}∗
(Coerc) [[S]] ::= (Hs,Hw,R, pc,B)

Fig.3. Specification syntax.

The validity of a precondition depends on the lo-
cal data structures only. Note that the log file L is
excluded, because programmers will not observe the
transitions of the log file and the well-formedness of
a commit instruction relies on the well-formedness of
both branches, the state of the log file is not vital.

3.3 Inference Rules

The inference rules for a program are shown in Fig.4,
and the rules for instructions are shown in Fig.5. We
use the following judgement forms to define the infer-
ence rules:

Φ, [p1, . . . , pn] ` P (well-formed program),

Ψ , Inv ` {p} (C,H,T) (well-formed thread),

Ψ , Inv ` C : Ψ ′ (well-formed code heap),

Ψ , Inv ` {p} f : I (well-formed instr. sequence).

A program is well-formed if the global heap respects
the invariant on it and every thread of the program is
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well-formed. Thus the verification of a multi-threaded
program can be decomposed into the verification of its
component threads. The reasoning is thread-modular
in our system.

Φ, [p1, . . . , pn] ` P (Well-formed program)

Φ = (Inv , [Ψ1, . . . ,Ψn])

Inv H ∀ k. Ψk, Inv ` {pk} (C,H,TS(tk))

Φ, [p1, . . . , pn] ` (C,H,TS) (prog)

Ψ , Inv ` {p} (C,H,T) (Well-formed thread)

Inv H p (Hs,Hw,R, f,B)

Ψ , Inv ` C : Ψ Ψ , Inv ` {p} f : C[f ]

Ψ , Inv ` {p} (C,H, (Hs,Hw,R, f,L,B))
(thrd)

Ψ , Inv ` C : Ψ ′ (Well-formed code heap)

∀ f ∈ dom(Ψ ′) : Ψ , Inv ` {Ψ ′(f)} f : C[f ]

Ψ , Inv ` C : Ψ ′ (cdhp)

Fig.4. Inference rules.

Ψ , Inv ` {p} f : I (Well-formed instruction sequence)

Ψ(B.pc) = p′′ Ψ , Inv ` {p′} f+1 : I
∀ S. Inv S.H ∧ p [[S]] → ∀ (l, w) ∈ S.L, S.H(l) = w

→ Inv (Step (S)).H ∧ p′ [[Step (S)]]
∀ S. Inv S.H ∧ p [[S]] → ¬∀ (l, w) ∈ S.L, S.H(l) = w

→ Inv (Step (S)).H ∧ p′′ [[Step (S)]]
Ψ , Inv ` {p} f : commit; I (commit)

Ψ(f ′) = p′

∀ S. Inv S.H ∧ p [[S]] →
Inv (Step (S)).H ∧ p′ [[Step (S)]]

Ψ , Inv ` {p} f : j f ′
(j)

Ψ(R(rs)) = p′

∀ S. Inv S.H ∧ p [[S]] →
Inv (Step (S)).H ∧ p′ [[Step (S)]]

Ψ , Inv ` {p} f : jr rs
(jr)

Ψ(f ′) = p′′ Ψ , Inv ` {p′} f+1 : I
∀ S. Inv S.H ∧ p [[S]] → S.R(rs) = S.R(rt)

→ Inv (Step (S)).H ∧ p′′ [[Step (S)]]
∀ S. Inv S.H ∧ p [[S]] → S.R(rs) 6= S.R(rt)

→ Inv (Step (S)).H ∧ p′ [[Step (S)]]
Ψ , Inv ` {p} f : beq rs, rt, f ′; I

(beq)

ι ∈ {addu, addiu, subu, sltu, andi, lw, sw, starttrans}
Ψ , Inv ` {p′} f+1 : I
∀ S. Inv S.H ∧ p [[S]] →

Inv (Step (S)).H ∧ p′ [[Step (S)]]
Ψ , Inv ` {p} f : ι; I (seq)

Fig.5. Inference rules cont’.

A thread is well-formed if the precondition of the
thread is satisfied and the invariant on the global heap
holds. Also the code heap and the instruction sequence
the thread is going to execute are required to be well-
formed.

And a code heap is well-formed only if every instruc-
tion sequence of it is well-formed.

Most inference rules for instruction sequence are
similar and grouped in the SEQ rule. It requires that
the precondition together with the global invariant en-
sures the safe execution of the instruction; and that the
resulting state respects the global invariant and satis-
fies the postcondition which also serves as the precon-
dition of the remaining instruction sequence. Note that
the STARTTRANS rule is also grouped in SEQ rule. Even
though the instruction copies the global heap to its local
heap, it does not need special treatment for its behav-
ior.

The BNE and BEQ rules are similar and we present one
here. Also they do not make much difference from the
SEQ rule except that they check both branches where
the control flow will switch depending on the equiva-
lence of the values that corresponding registers store.

The J and JR rules require that it is safe to make a
jump to the target address and the global invariant is
preserved after jumping.

The COMMIT rule is similar to the BEQ rule except
that it branches due to the consistence of the log file.
It checks that both successful commit case and roll-
back case are well-formed. And the requirement that
the resulting state respects the global invariant after
successful commit actually claims for the checking of
the update made by the successfully committed trans-
action on the global heap H. Furthermore, it is easy
to show that rollback is always allowed. A rollback is
caused by an update on the global heap. Since we will
restore local data structures of transactions, the differ-
ence of start and rollback state of a transaction is the
global heap only. But all updates on the global heap
are required to respect the global invariant, and the
precondition relies on local data structures only. So it
is always safe to roll back a transaction.

As shown in the inference rules, the invariant on the
global heap is required to preserve for every instruc-
tion rule, so the invariant on the global heap is guar-
anteed all through the program. And the transitions of
a thread are tracked in the preconditions of its instruc-
tions.

3.4 Soundness

The soundness of these inference rules with re-
spect to the operational semantics of the abstract ma-
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chine is established following the syntactic approach
to proving type soundness. From the “progress” and
“preservation” lemmas, we can guarantee that given a
well-formed program under compatible preconditions,
the current instruction sequence will be able to exe-
cute without getting “stuck”. Furthermore, any safety
property derivable from the global invariant will hold
throughout the execution. The soundness of our system
is formally stated as Theorem 1.

Lemma 1 (Progress). Φ = (Inv , [Ψ1, . . . ,Ψn]). If
there exist p1, . . . , pn, such that Φ, [p1, . . . , pn] ` P, then
there exists a program P′ such that P 7−→ P′.

Lemma 2 (Preservation). Φ = (Inv , [Ψ1, . . .,
Ψn]). If Φ, [p1, . . . , pn] ` P and P 7−→ P′, then there
exist p′1, . . . , p

′
n such that Φ, [p′1, . . . , p

′
n] ` P′.

Theorem 1 (Soundness). Φ = (Inv , [Ψ1, . . .,
Ψn]). If there exist p1, . . . , pn, such that Φ, [p1, . . .,
pn] ` P, then for any n > 0, there exist a program P′
and p′1, . . . , p

′
n such that P 7−→n P′ and Φ, [p′1, . . . , p

′
n] `

P′.

3.5 Separation Logic

We describe heaps using separation logic[27]. Ex-
cept for implication, separation logic is similar to lin-
ear logic, where register and heap bindings are treated
as intuitionistic and linear resources, respectively, ex-
tended with an axiom restricting each heap address to
a single binding. We write A and B for heap predicates.
We write H ° A if the heap predicate A holds on heap
H. The syntax for the fragment of separation logic we
use is given in Fig.6.

A, B ::= n 7→ m | emp | A ∗B | A ∧B | A ∨B

| ∃ x : P.B | ∀ x ∈ S.A

Fig.6. Separation logic.

Now we describe these predicates informally. n 7→ m
holds if the heap consists entirely of the binding of n to
m. emp holds only on the empty heap. A ∗ B holds if
the heap can be split into two disjoint parts such that A
holds on one and B on the other. A∧B holds if both A
and B hold on the entire heap. A∨B holds if either A
or B holds on the heap. ∃ x : P.B holds if there exists
an x of type P such that Bx holds on the heap. P will
be omitted when it is clear from the context. ∀ x ∈ S.A
holds on a heap that satisfies Ax for all x in the finite
set S.

4 Examples

In our system, not only the invariant on each thread
of a program but also the invariant on the global heap

which multiple threads cooperate on are checked. The
expressiveness and the application to high-level pro-
grams of such invariance proof method have been well-
known. It is the atomicity and isolation properties of
transactional memory that make the requirement of in-
variant on shared memory reasonable.

In this section, we use examples to demonstrate the
effectiveness of our reasoning system. And we present
examples in high-level programs and their assembly
counterparts, showing that reasoning about programs
using TM in assembly level is essentially the same as in
high-level under such reasoning.

4.1 Dining Philosopher Algorithm

A simplified example of dining philosophers in trans-
actional program style is shown in Fig.7, where two
philosophers (Thread1 and Thread2) share two forks
(represented by memory locations fork1 and fork2).
A philosopher picks up a fork by writing the thread id
(1 or 2) into the memory location representing the fork,
and puts down a fork by writing 0.

Variables: Invariant:

nat fork1, fork2; fork1 = fork2

Thread1 : Thread2 :

while (TRUE) { while (TRUE) {
starttrans; starttrans;

if (! fork1){ if (! fork2){
fork1 = 1; fork2 = 2;

fork2 = 1; fork1 = 2;

commit; commit;

} }
else { else {

commit; commit;

continue; continue;

} }
// eat // eat

starttrans; starttrans;

fork1 = 0; fork1 = 0;

fork2 = 0; fork2 = 0;

commit; commit;

// think // think

} }

Fig.7. Simplified example of dining philosopher algorithm.

The invariant on the shared memory can be ex-
pressed as (fork1 = fork2), indicating that both forks
are free (when they are all equal to 0) or a philosopher is
holding them both. In the more general case of three or
more philosophers, the invariant on the shared memory
can be expressed as (∀ i.forki = 0∨forki = forki+1 =
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i ∨ forki = forki−1 = i − 1), indicating that the i-th
philosopher is not holding forks or he is holding both
forks he need or his fork is being held by others, where
forks are free or picked in pairs and a philosopher is try-
ing to pick his own fork and the fork of the philosopher

Inv H , ∃ v. H ° fork1 7→ v ∗ fork2 7→ v

L1: −{pc = L1}
starttrans

−{∃ v.Hs ° fork1 7→ v ∗ fork2 7→ v

∧Hw ° emp ∧ B.pc = L1}
lw t1 fork1 zero

−{∃ v.Hs ° fork1 7→ v ∗ fork2 7→ v

∧Hw ° emp ∧ B.pc = L1 ∧ R(t1) = Hs(fork1)}
bne t1 zero L3

−{Hs ° fork1 7→ 0 ∗ fork2 7→ 0

∧Hw ° emp ∧ B.pc = L1}
addiu t2 zero 1

−{Hs ° fork1 7→ 0 ∗ fork2 7→ 0

∧Hw ° emp ∧ B.pc = L1 ∧ R(t2) = 1}
sw t2 fork1 zero

−{Hs ° fork1 7→ 1 ∗ fork2 7→ 0

∧Hw ° fork1 7→ 1 ∧ B.pc = L1 ∧ R(t2) = 1}
sw t2 fork2 zero

−{Hs ° fork1 7→ 1 ∗ fork2 7→ 1

∧Hw ° fork1 7→ 1 ∗ fork2 7→ 1 ∧ B.pc = L1}
commit

−{true}
j L2

L2: −{pc = L2}
starttrans

−{∃ v.Hs ° fork1 7→ v ∗ fork2 7→ v

∧Hw ° emp ∧ B.pc = L2}
addiu t3 zero 0

−{∃ v.Hs ° fork1 7→ v ∗ fork2 7→ v

∧Hw ° emp ∧ B.pc = L2 ∧ R(t3) = 0}
sw t3 fork1 zero

−{∃ v.Hs ° fork1 7→ 0 ∗ fork2 7→ v

∧Hw ° fork1 7→ 0 ∧ B.pc = L2 ∧ R(t3) = 0}
sw t3 fork2 zero

−{Hs ° fork1 7→ 0 ∗ fork2 7→ 0

∧Hw ° fork1 7→ 0 ∗ fork2 7→ 0 ∧ B.pc = L2}
commit

−{true}
j L1

L3: −{pc = L3 ∧ Hs ° fork1 7→ 1 ∗ fork2 7→ 1

∧Hw ° emp ∧ B.pc = L1}
commit

−{true}
j L1

Fig.8. Dining Philosophers in our system.

next to him always. Note that we cannot ensure fairness
in our system. Verification of such liveness properties
is part of our future work.

The corresponding specification and program for our
system are shown in Fig.8. Only the code for Thread1

is given because that of Thread2 is similar. In this ex-
ample, Inv defines the invariant on the global heap for
this program (fork1 = fork2).

We explain the code block labeled L1, which cor-
responds to the operations of picking up both forks
for philosopher 1. The precondition of this block in-
dicates that all jumpings to this block are allowed be-
cause (pc = L1) is always valid when it is about to ex-
ecute the instruction labeled L1. After the block starts
a transaction, the write attempts Hw of this transac-
tion are set empty and the global heap H is copied to
local Hs, so the local heap also respects the global in-
variant here (Inv Hs). Also the target of rollback is
set where the transaction starts (B.pc = L1). Then it
tries to pick up both forks (updates Hs) after checking
that the forks are free at its view. Note that the invari-
ant is broken locally (Hs ° fork1 7→ 1 ∗ fork2 7→ 0)
when the first fork is picked (sw t2 fork1 zero), and
is reestablished when the other fork is also picked before
the transaction commits. Then it commits its picking
up (Hw ° fork1 7→ 1 ∗ fork2 7→ 1) to the global heap
H if no forks have been picked and are being held by
the other (Thread2) during its try.

Note that the reasoning of Thread1 needs no infor-
mation of Thread2. Due to the guarantee that all modi-
fications to the global heap will respect the global in-
variant, we are able to perform such reasoning. And
it is obvious that the composition of such reasoning is
easy, since we need only to identify the compatibility
of the invariants of different threads to increase concur-
rency.

When reasoning about the lock-based program for
this example[21], programmers are required to en-
sure the non-interference between every two threads.
And when composing threads, the non-interference be-
tween the newly-added one and all the existent is re-
quired. The concurrency-control mechanism, transac-
tional memory, significantly eases the reasoning.

Interestingly, we can perform a similar reasoning for
the corresponding high-level programs in Fig.7. We
know that (fork1 = fork2) is valid when the trans-
action starts. And the forks are free to pick if (fork1 =
0 = fork2). Then the philosopher will commit his pick-
ing attempts successfully if shared memory has not been
updated by the other thread. Finally, shared memory
remains in a state that respects the invariant (fork1 =
1 = fork2).
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Usually, high-level languages use a programming
structure atomic{. . . } to identify a transaction. Such a
transaction structure denies the flexibility of construct-
ing a transaction, where branches may lead to different
components of a same start of a transaction, as shown
in Fig.7. For the same philosopher thread, an auxil-
iary variable is needed to record the picking attempts
inside the transaction and used to decide whether to
try for forks again before eating. Fig.9 presents the
code fragment using an auxiliary variable for the atomic
block. We can see that the assembly-level abstraction
does provide certain convenience.

while (TRUE) {
picked = FALSE;

atomic{
if (! fork1){

fork1 = fork2 = 1;

picked = TRUE;

}
}
if (! picked) continue;

// eat

.

.

.

Fig.9. Auxiliary variable in atomic block.

4.2 Producer-Consumer Algorithm

Fig.10 presents the code for the producer-consumer
algorithm where producers keep putting goods into the

Variables: Invariant:

bool Full, Empty; ! (Full ∧ Empty)

int In, Out; 0 6 In, Out < BFSIZE

Producer : Consumer :

while (TRUE) { while (TRUE) {
starttrans; starttrans;

if (! Full) if (! Empty)

{ {
In+ +; Out+ +;

if (In == BFSIZE) if (Out == BFSIZE)

In -= BFSIZE; Out -= BFSIZE;

if (In == Out) if (Out == In)

Full = TRUE; Empty = TRUE;

Empty = FALSE; Full = FALSE;

} }
commit; commit;

} }

Fig.10. Producer-consumer.

Inv H , ∃ v1, v2, v3, v4. H ° Full 7→ v1 ∗ Empty 7→ v2∗
In 7→ v3 ∗ Out 7→ v4

∧ v1 = TRUE→ v2 = FALSE

∧ v2 = TRUE→ v1 = FALSE

∧ v3 < BFSIZE ∧ v4 < BFSIZE

L start: −{pc = L start}
starttrans

lw rfull Full zero

addiu rtrue zero TRUE

bne rfull rtrue L addin

j L commit

L addin: −{B.pc = L start ∧ Hw ° emp

∧ ∃ v1, v2, v3, v4. Hs ° Full 7→ v1∗
Empty 7→ v2 ∗ In 7→ v3 ∗ Out 7→ v4

∧ v3 < BFSIZE ∧ v4 < BFSIZE

∧ R(rtrue) = TRUE ∧ v1 6= TRUE}
lw rin In zero

addiu rin rin 1

addiu rtemp zero BFSIZE

beq rin rtemp L subR

j L fcheck

L fcheck:

sw rin In zero

lw rout Out zero

beq rin rout L fset

j L setemp

L setemp: −{B.pc = L start

∧ ∃ v1, v2, v3, v4. Hs ° Full 7→ v1∗
Empty 7→ v2 ∗ In 7→ v3 ∗ Out 7→ v4

∧ v3 < BFSIZE ∧ v4 < BFSIZE

∧ ((v1 6= TRUE ∧ Hw ° In 7→ v3)

∨ (v1 = TRUE

∧ Hw ° Full 7→ v1 ∗ In 7→ v3))}
addiu remp zero FALSE

sw remp Empty zero

j L commit

L commit: −{B.pc = L start

∧ ∃ v1, v3, v4. Hs ° Full 7→ v1∗
Empty 7→ FALSE ∗ In 7→ v3 ∗ Out 7→ v4

∧ v3 < BFSIZE ∧ v4 < BFSIZE

∧ ((v1 6= TRUE

∧ Hw ° Empty 7→ FALSE ∗ In 7→ v3)

∨ (v1 = TRUE

∧ (Hw ° Full 7→ v1 ∗ Empty 7→ FALSE∗
In 7→ v3 ∨ Hw ° emp)))}

commit

j L start

L subR:

subu rin rin rtemp

j L fcheck

L fset:

sw rtrue Full zero

j L setemp

Fig.11. Producer-consumer in our system.
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storage while consumers keep consuming goods. The
storage is modeled as a finite First In First Out queue in
the program. Threads (producers and consumers) oper-
ate on the queue concurrently while keeping the queue
consistent: the queue will not overflow and will not
be full and empty simultaneously. This invariant is ex-
pressed as ! (Full∧ Empty) ∧ (0 6 In, Out < BFSIZE),
where Full and Empty indicate the queue is full or
empty respectively, In points to the location where pro-
ducers are about to put goods and Out points to the
location where consumers are about to consume goods.

The assembly code for producers and the corre-
sponding invariant for the program are presented in
Fig.11. The specifications are also shown of where a
producer thread is about to start a transaction (labeled
L start, to increase goods (labeled L addin), to sig-
nal the non-emptiness of the storage (labeled L setemp)
and to commit the transaction (labeled L commit). And
the code and specifications for consumers are similar
and not shown here.

Producers and consumers would start transactions
and collect effects they attempt to make based on their
local views to the global heap. Then they would commit
their modifications to the global heap with respect to
the global invariant when their attempts are validated.

Our work is fully mechanized in the Coq proof as-
sistant, including the system, its soundness proof and
the examples that are demonstrated above. Interested
readers can check out our Coq implementation[28] for
more details.

5 Related Work

Many methods have been proposed for reasoning
about properties of both sequential and concurrent
programs[29−33]. But most efforts on concurrent pro-
grams focus on the lock-based programs and do not
aim at programs using TM. And the lock-based reason-
ing requires programmers to reason about the interfer-
ence between threads. But as we present in this paper,
TM-based reasoning does not. There is an easier way
enforced by the TM semantics to perform TM-based
reasoning.

Harris et al.[34] require an explicit definition of in-
variants from programmers to track the dependencies
between transactions. But they do not specify the prop-
erties of a program. Concurrent separation logic[35]

separates shared memory into pieces, each of which is
guarded by a lock and respects certain invariant, to
perform the verification of lock-based concurrent pro-
grams. We are enlightened by these work and specify
invariants on shared memory to check the correctness

of interaction. And we formalize our reasoning into a
PCC[16] system.

Recent years, Shao et al. have developed CCAP[21],
CMAP[22] and SAGL[36] as extensions to the PCC
framework to verify properties of concurrent programs
using locks. And we present an extension to enable
verification of concurrent programs using TM.

Also, much work has started to explore the seman-
tics of transactional memory. Moore and Grossman[13]

have presented type systems to study the behaviors of
spawning threads in transactional programs and showed
the relation of strong and weak atomicity in TM sys-
tem’s implementations. They presented the semantics
of transactions in a λ-calculus. In a later version of their
work[14], they expanded to study the semantics of the
rollback operation for eager versioning in details. They
used different type systems to study different issues.

Abadi et al.[15] developed semantics and type sys-
tems for the Automatic Mutual Exclusion (AME) cal-
culus, which encourage programmers to place as much
of the program text inside transactions as possible.
They also presented the semantics and correctness of
the rollback operation in their systems.

Vitek et al.[11] used a variant of Featherweight
Java[37] to define a framework to explore various im-
plementation strategies of TM systems and to ensure
the correctness of an implementation by establishing a
serializability result. And they assumed all codes exe-
cute inside transactions.

However, most work on TM semantics has just ex-
plored definition of abstract machines and execution of
transactional programs, and does not propose rules for
certifying general properties of concurrent programs us-
ing TM.

6 Conclusion

In this paper we present a system for verifying
concurrent programs using transactional memory. We
modeled an assembly-level machine with built-in trans-
actional memory. We incorporated the well-known
invariant-based proof method into our system by requir-
ing the preservation of invariant not only on properties
of each thread of a program but also on the shared mem-
ory these threads cooperate on. We proved our reason-
ing sound with respect to the TM semantics. And we
used a few examples to demonstrate the effectiveness of
our techniques. For now, our system can reason about
safety properties of programs using TM only. Enriching
the expressiveness of the program logic of our system
to enable the verification of liveness properties such as
fairness will be part of our future work. And we also
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plan to study the violations in implementations of TM
systems in more depth and define a more flexible pro-
gramming model for supporting transactional memory.
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